

HENSEI 变成

1. REDUCTION OF ASTRINGENCY AND EDGES

- Bitter tannin compounds are softened.
- The flavor is rounded, eliminating aggressive or sharp notes, especially in liquors, young wines, or acidic sakes.

2. AROMATIC INTEGRATION

- The harmony between primary, secondary, and tertiary aromas is enhanced.
- In sakes and wines, deeper notes appear: glucose-floral, nuts, umami, or soft earthy notes.
- In sauces, such as soy sauce, fermentation, toasted, and umami notes are enhanced.

3. TRANSFORMATION OF BODY AND TEXTURE

- In sakes, greater density and unctuousness are perceived.
- In wines, the body, mouthfeel becomes more velvety and enveloping.
- In sake, greater roundness appears, the alcoholic sensation decreases, and a soft natural sweetness stands out with possible generation of more viscous polysaccharides.

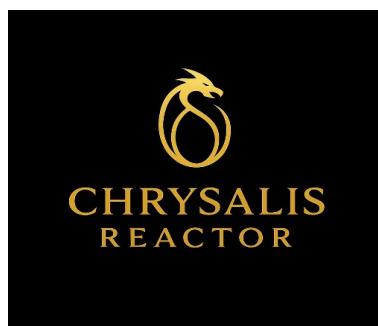
4. DEEPENING OF COLOR

- A visual evolution is observed: more golden, coppery, or amber tones in white wines, sake, or whisky.
- Sauces tend to lighten or adopt a clearer tone, suggesting oxidation of melanins and mild Maillard that lightens the matrix.

5. DEVELOPMENT OF TERTIARY NOTES

- In short aging (20-30 days), new nuances already appear: soft smoky, more pronounced umami, and notes that usually appear after years.
- In sakes and liquors, almond, nut, or wood notes appear without having gone through a barrel.

6. ORGANOLEPTIC STABILIZATION


- At the end of the procedure, the product presents longer-lasting aromatic and gustatory stability.
- The result is maintained during bottling.

Possible explanations (not yet conclusive): [Effect of natural gamma radiation on complex molecular bonds, promoting structural reorganization without altering product safety, facilitating smoother enzymatic transitions.](#)

- Quasi-isothermal conditions and lack of vibration allow volatile compounds to group more stably. More harmonious energy structures are favored.

7. ABSENCE OF LIGHT AND NOISE

- Prevents premature oxidation or decomposition of sensitive aromatic molecules.

